

UNIVERSITY OF LILLE

European benchmark university, recognized for the excellence of its lifelong training, the University of Lille is setting up at the beginning of the 2020 academic year a renewed training offer in its diplomas, programs and teaching methods which places the student at the heart of his/her concerns, to encourage his/her involvement and success. It offers 195 training mentions in line with there changes in the socio-economic world, backed by cutting-edge international research conducted by 62 research units in order to raise the major challenges of there society.

FACULTY OF SCIENCE AND TECHNOLOGY

The faculty of science and technology is a training and research unit of the University of Lille.

It brings 9 training departments and 27 research structures in the following areas:

Biology; Chemistry; Electronics, Electrics engineering, Automatic; Computer Science; Mathematics; Mechanics; Physics; Earth Science; Station Marine Wimereux.

The faculty of science and technology of the University of Lille offers a multidisciplinary training offer quality, from Bachelor to PhD, through professional bachelors and master's degrees. The faculty hosts every year on the campus more than 7 000 students in initial training.

ADMINISTRATIVE

STAFF

Faculty of Sciences and technology **Mathematics Department**

- University of Lille Campus cité scientifique
- Pedagogical Secretariat :

03 20 43 42 33

Master 1 - Hélène KOWALSKI math-masters1@univ-lille.fr 03 20 43 45 74 Master 2 - Aurore SMETS math-masters2@univ-lille.fr

COORDINATORS **AND DIRECTORS**

Master 1 Caterina CALGARO caterina.calgaro@univ-lille.fr 03 20 43 47 13

Master 2 **Thomas REY** thomas.rey@univ-lille.fr 03 20 43 67 87

Nouredine MELAB nouredine.melab@univ-lille.fr 03 59 35 86 27

APPLICATIONS

Prerequisites for access to Master 1: Bachelor-level knowledge in mathematics.

The recommended mentions of Bachelor are those of mathematics, mathematics-computer science or any other scientific bachelor with a strong mathematics level.

Prerequisites for access to Master 2: a first year of master's degree (Computer Science, Mathematics, Mechanics, Physics, ...) is required to apply. A validation of studies or professional experience is necessary for students wishing to apply but not having the required qualifications.

Admission capacities: 60 places in Master 1, 14 places in Master 2.

International students must complete the Campus France procedure as soon as possible (campusfrance. org/en) for application to the Master and Student Visa.

Students with no Campus France agency in their countries and Europeans have to go through the university's application program e-candidat

https://ecandidat.univ-lille.fr/

RECRUITMENT CALENDAR

- Opening Campus France:
- Opening e-candidat: from May 09, 2022 to June 15, 2022
- Publication of admissions: beginning of July 2022.

INTERNATIONAL RELATIONSHIPS

• The University of Lille has a policy of supporting international access to its courses. That's why it has introduced special procedures to make international students feel welcome and form collaborations.

https://www.univ-lille.fr/home/international-student/

Practical information for your stay at the University of Lille

https://www.univ-lille.fr/home/international-student-tool-box/

SCHOLARSHIPS

Scholarships awarded by the Graduate Programme « Information and Knowledge Society » are available to M1 and M2 students to support their studies, to facilitate their settling in Lille and to make an internship

Elligibility, criteria and application can be found here:

http://www.isite-ulne.fr/index.php/en/graduate-programme-information-and-knowledge-society-

deadline: 15th March 2022 (first call); please check the date online for the second call

Master

Master 1 / Master 2

Mention

Mathematics and applications

SCIENTIFIC COMPUTING

Accessible in: initial training, continuing

MASTER MENTION MATHEMATICS AND APPLICATIONS

MASTER 1 - MATHEMATICS AND APPLICATIONS

MASTER 2 - Mathematics and pplications cursus Scientific computing

MASTER 2 - Mathematics and applications cursus Statistical and Numerical Engineering - Data science: MASTER 2 - Mathematics and applications cursus Mathematics, computational finance, actuarial science

OBJECTIVES

This Master offers a high-level training in high performance computing for numerical simulation. Nvidia, Intel, Atos-Bull, IBM or other national companies regularly intervene in training through a seminar or a training day.

Students who have validated this degree have:

- for 2/3, found a job as an engineer or research engineer in a company or an applied research center:
- for 1/3, improved and completed their skills in scientific computing, preparing a PhD thesis.

The objective of the Master degree is to train scientists able to understand the models from physics and industry, to create and implement simulation methods for these models in an optimal way on the most recent parallel computer architectures.

The training provides:

- know-how in mathematical modeling of physical phenomena;
- a mastery of universal mathematical and computer tools (optimization, signal processing, programming);
- an expertise in simulation of the physic's equations physics (partial differential equations): efficient numerical schemes and methods;
- expertise in programming languages and supercomputing: parallel computing, accelerator (GPU) programming, distributed computing.

TARGETED **SKILLS**

The skills acquired by students are:

- a general multidisciplinary scientific culture in modeling (physics, mechanics), applied mathematics (partial differential equations, linear algebra, optimization, probabilities), in computer science (languages and programming principles), in scientific english.
- finer practical knowledge in applied mathematics on the handling of partial differential equations (PDEs), and methods to solve these PDEs using computers.
- the masters of programming languages adapted to scientific computing (C++, Python) and the practice of high performance computing on the most recent hardware architectures.
- the ability to apply these skills in a professional situation through a 4-to-6-months internship in a company or a research laboratory/center.

FURTHER **STUDIES**

About 1/3 of the Master's students continue with a PhD thesis. It is possible under certain conditions (access through application). The 3-year doctorate is carried out in a research laboratory in France or abroad. Cifre (industrial) theses are also possible. Here are some examples of French laboratories that have welcomed Master students: Inria Lille North Europe, LJAD - University Côte d'Azur, LIAS

- University of Poitiers, LIRIS ENS Lyon, CRIStAL
- University of Lille / University of Mons, L2EP University of Lille / Valeo Electrical System, PhD CIFRE University of Lille / HYGEOS

JOB OPPORTUNITIES

The professional circles targeted at the end of the training are those of modeling and numerical computing, in particular large-scale national companies, SMEs, specialized technical centers and scientific organizations carrying out research and development activities in the disciplines requiring Mastery of numerical simulation tools. The most frequently held positions are those of research and development engineer, design engineer, project manager, software engineer, consultant, HPC expert, or research and development project manager. About 2/3 of the students of the Master's degree enter the professional sphere.

STRENGTHS OF THE TRAINING

- The major assets of this training are its multi-disciplinary nature and its coherence. The students succeed in mastering the whole process of numerical simulation: from an abstract model to an in silico simulation that makes the best use of available computing resources. This makes them valuable and rare recruits both in the private market and in research laboratories.
- There is a strong interaction between fundamental courses and practical modules, extended by numerous supervised projects concretely implementing the acquired knowledge.
- For their specialization, the master 2 students have powerful computing resources to carry out their projects (the hybrid cluster from the DSI computing center of University of Lille as well as access to the Grid'5000 nation-wide computational grid).
- The teaching team is composed of (associate) Professors from 5 joint research units of the Faculty of Science and Technology as well as invited speakers from the economic world.
- Scholarships awarded by the Graduate Programme 'Information and Knowledge Society' and also by the labex 'CEMPI'. They are available to M1 and M2 students to support their studies, to facilitate their settling in Lille and to make an internship in a foreign country. Elligibility, criteria and application can be found here: http://www.isite-ulne.fr/index.php/en/graduate-programme-information-knowledge-society and https://math.univ-lille1.fr/~cempi/index_eng.php

THIS MASTER'S DEGREE PROGRAMME IS A MEMBER OF

THE GRADUATE PROGRAMME 'INFORMATION AND KNOWLEDGE SOCIETY'

The interdisciplinary Graduate Programme brings together 10 Master tracks, combining the expertises needed to build a human -friendly world. An outstanding scientific environment is provided with 13 research units recognized at the best international level.

Students benefit from interdisciplinary actitivities, including thematic summer schools, financial support for international mobility and professional training in accordance with research and economic partners.

This programme guides students to prepare their career and to tackle the scientific and technological challenges of our time.

http://www.isite-ulne.fr/index.php/en/graduate-programme-information-and-knowledge-society-student/

TRAINING **ORGANIZATION**

Master 1 courses are taught in French, Master 2 courses are taught in English. The recommended level of English corresponds to level B2 of the Common European Framework of Reference.

The training is organized around Knowledge and Skills Blocks (BCC)

Taught in French

MASTER 1 Semester 1

BCC THEORETICAL BASIS 1 (18 ECTS)

- Convex optimization
- Modeling and approximation by finite differences
- Probabilities models and applications

BCC PRACTICAL TOOLS 1 (12 ECTS)

- Numerical analysis with C++
- Factor analysis
- Student project

MASTER 1 - Semester 2

BCC THEORETICAL BASICS 2 (15 ECTS)

- Study of elliptic and parabolic problems
- Numerical tools for scientific computing

BCC PRACTICAL TOOLS 2 (15 ECTS)

- English
- Openness to physics
- Supervised research work
- Student project

Taught in English

MASTER 2. Semester 3

- BCC BASIC TOOLS AND SOFT SKILLS (12 ECTS)
- PrerequisitesSeminars
- Scilliais

BCC HIGH PROFILE SKILLS (18 ECTS)

- Mathematical tools for simulation
- Supercomputing

MASTER 2. Semester 4

BCC SCIENTIFIC COMPUTING APPLICATIONS

(12 ECTS)

- 2 choices from the following list of courses proposed every year:
- Scientific computing for optimization and machine learning
- Scientific computing for electrical engineering
- Scientific computing for mechanics
- Scientific computing for parallel numerical linear algebra
- Scientific computing for material science
- Scientific computing for nonlinear optics and photonics

BCC INTERNSHIP IN A COMPANY OR RESEARCH LABORATORY (4 TO 6 MONTHS) (18 ECTS)

For more information on the national diplomas offered by the Faculty of science and technology of the University of Lille, consult the training catalog:

www.univ-lille.fr/formations.html